1217: VIJOS-P1042
时间限制: 0 Sec 内存限制: 128 MB 提交: 78 解决: 29 [ ][ ][ ]题目描述
有一天,雄霸传授本人风神腿法第一式:捕风捉影..............的步法(弟子一:堂主,你大喘气呀。风:你给我闭嘴。)捕风捉影的关键是换气(换不好就会大喘气...)。 使用捕风捉影这一招时并不是每一步都喘气,而是在特定的步数喘气。一般来说功力越高,喘气越稀疏。喘气的步数符合特定规律:第一要是SUSHU(弟子二:哇塞!堂主,你还会鸟语,我好好崇拜你呦!可是SUSHU是什么意思呢?风:笨蛋,那是汉语拼音!)第二要是一个回文数,回文数就是正反念一样的数,如:123321,121,5211314(弟子三:堂主,最后一个好象不是...风:废话,当然不是了,我是考察一下你们的纠错能力!)现在给出两个数M,N(5< =M< N< =100,000,000),你要算出M,N之间需要换气的都有哪几步。(包括M,N)。算出来的可以提升为本堂一级弟子,月薪(1000000000000000000000000000000000000000000 MOD 10 )元。
输入
两个整数M,N。用空格隔开。
输出
在M,N之间的换气点,每个一行。
样例输入
100 500
样例输出
101131151181191313353373383
#include#include int prime[4000];int psize;int from, to;void getPrime(){ memset(prime, 0, sizeof(prime)); psize = 0; int i,j; bool a[10000]; memset(a, -1, sizeof(a)); for (i = 2; i < 10000; i++){ if (!a[i])continue; prime[psize++] = i; for (j = i + i; j < 10000; j+=i)a[j] = false; }}bool isPrime(int n){ int i; for (i = 0;prime[i]*prime[i]<=n; i++)if (n%prime[i] == 0)return false; return true;}void one(){ if (from>7)return; if (from == 5)printf("5\n"); printf("7\n");}void three(){ if (from > 999)return; int i, j,k; int a[4] = { 1, 3, 7, 9 }; for (i = 0; i < 4;i++) for (j = 0; j < 10; j++){ k = a[i] * 100 + j * 10 + a[i]; if ( k< from)continue; if (k>to)return; if (isPrime(k))printf("%d%d%d\n", a[i], j,a[ i]); }}void five(){ if (from>99999)return; int a[4] = { 1, 3, 7, 9 }; int i, j, k, l; for (i = 0; i < 4;i++) for (j = 0; j < 10;j++) for (k = 0; k < 10; k++){ l = a[i] * 10000 + j * 1000 + k * 100 + j * 10 + a[i]; if (l to)return; if (isPrime(l))printf("%d%d%d%d%d\n", a[i], j, k, j, a[i] ); }}void seven(){ if (from>9999999)return; int a[4] = { 1, 3, 7, 9 }; int i, j, k, l,m; for (i = 0; i < 4; i++) for (j = 0; j < 10; j++) for (k = 0; k < 10; k++) for(m=0;m<10;m++){ l = a[i] * 1000000 + j * 100000 + k * 10000 + m * 1000 +k*100+j*10+ a[i]; if (l to)return; if (isPrime(l))printf("%d%d%d%d%d%d%d\n", a[i], j, k,m,k, j, a[i]); }}int main(){ getPrime(); prime[psize++]=10001; scanf("%d%d", &from, &to); one(); if (11 >= from && 11 <= to)printf("11\n"); three(); five(); seven(); return 0;}
上面这个5ms再慢一点的算法:6311ms
#include最慢42805ms#include #include int prime[4000];int psize;int from, to;void getPrime(){ memset(prime, 0, sizeof(prime)); psize = 0; int i,j; bool a[10000]; memset(a, -1, sizeof(a)); for (i = 2; i < 10000; i++){ if (!a[i])continue; prime[psize++] = i; for (j = i + i; j < 10000; j+=i)a[j] = false; }}bool isPrime(int n){ int i; for (i = 0;prime[i]*prime[i]<=n; i++)if (n%prime[i] == 0)return false; return true;}bool isHuiwen(int n,int wei){ if (wei == 0||wei==1)return true; int i; if (n /(int) pow((double)10, wei-1) == n % 10){ n %= (int)pow((double)10, wei-1); n /= 10; if (isHuiwen(n, wei - 2))return true; } return false;}int main(){ getPrime(); prime[psize++]=10001; scanf("%d%d", &from, &to); if (from == 5)printf("5\n"); if (from <= 7 && to >= 7)printf("7\n"); if (11 >= from && 11 <= to)printf("11\n"); if (from < 100)from = 101; for (; from <= to; from++){ int wei = log10((double)from)+1; if (wei % 2 == 0){ from = pow((double)10, wei); wei++; if (from>to)break; } if (isPrime(from) && isHuiwen(from,wei)) printf("%d\n", from); } return 0;}
#include#include #include int prime[4000];int psize;int from, to;void getPrime(){ memset(prime, 0, sizeof(prime)); psize = 0; int i,j; bool a[10000]; memset(a, -1, sizeof(a)); for (i = 2; i < 10000; i++){ if (!a[i])continue; prime[psize++] = i; for (j = i + i; j < 10000; j+=i)a[j] = false; }}bool isPrime(int n){ int i; for (i = 0;prime[i]*prime[i]<=n; i++)if (n%prime[i] == 0)return false; return true;}bool isHuiwen(int n,int wei){ if (wei == 0||wei==1)return true; int i; if (n /(int) pow((double)10, wei-1) == n % 10){ n %= (int)pow((double)10, wei-1); n /= 10; if (isHuiwen(n, wei - 2))return true; } return false;}int main(){ getPrime(); prime[psize++]=10001; scanf("%d%d", &from, &to); if (from == 5)printf("5\n"); if (from <= 7 && to >= 7)printf("7\n"); if (11 >= from && 11 <= to)printf("11\n"); if (from < 100)from = 101; for (; from <= to; from++){ if (isPrime(from) && isHuiwen(from,log10((double)from)+1)) printf("%d\n", from); } return 0;}